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CHAPTER 2
Market Risk Basics

I n this chapter, we begin studying how to quantify market risk, the risk of
loss from changes in market prices, via statistical models of the behavior of

market prices. We introduce a set of tools and concepts to help readers better
understand how returns, risk, and volatility are defined, and we review some
basic concepts of portfolio allocation theory.

The statistical behavior of asset returns varies widely, across securities
and over time:

� There is enormous variety among assets, as we saw in Chapter 1, ranging
from simple cash securities, to fixed-income securities, which have a time
dimension, to derivative securities, whose values are functions of other
asset prices, to, finally, a bewildering array of indexes, basket products,
tradeable fund shares, and structured credit products.

� The market risks of many, if not most, securities must be decomposed
into underlying risk factors, which may or may not be directly observ-
able. In addition to statistical models, therefore, we also need models
and algorithms that relate security values to risk factors. We also need
to accurately identify the important risk factors.

We discuss the relationship between asset prices and risk factors
further in Chapter 4. For now, we will be a bit loose and use the terms
“asset prices” and “risk factors” synonymously.

� Some risk factors are far from intuitive. It is relatively straightforward
to understand fluctuations in, say, equity prices. But options and option-
like security returns are driven not only by price fluctuations, but also
by the actual and anticipated behavior of volatility. Markets can even,
as we see in Chapter 14, be affected by the volatility of volatility.

It is impossible to capture the variety of real-life security price fluctua-
tions in a single, simple model. But the standard model we develop in this
and the next chapter is useful as a starting point for quantitative modeling. It

43



P1: a/b P2: c/d QC: e/f T1: g

JWBT440-c02 JWBT440-Malz August 17, 2011 16:38 Printer: To Come

44 FINANCIAL RISK MANAGEMENT

will also help us understand the issues and pitfalls involved in security price
modeling. Nobody believes in the standard model literally, but it provides
a framework for thinking about problems. If we study the standard model,
and come away more conscious of its flaws than of its virtues, we will have
accomplished a great deal. Finally, as we see in Chapter 15, the standard
model informs to a large extent the regulatory approach to major financial
institutions.

We want to understand the relationship between risk and security price
behavior. Finance theory has developed a framework for this called modern
finance theory. It has plagued researchers with far more questions than
answers, but it helps organize thinking about the subject. Modern finance
theory has its roots in economic theory, where much of the theoretical
apparatus it employs, such as constrained expected utility maximization and
the conditions for a set of prices and quantities to be mutually consistent
and individually and socially optimal, were developed.

Choices are made through time, and the environment in which choices
are made is subject to uncertainty. To characterize uncertainty, modern
finance theory has made extensive use of tools, particularly certain classes
of stochastic processes, that describe uncertain environments over time and
permit tractable models to be developed.

2.1 ARITHMETIC, GEOMETRIC, AND LOGARITHMIC
SECURITY RETURNS

We begin by laying out the algebra of returns. Returns on an asset can be
defined two different ways, as a proportional change called the arithmetic
or simple rate of return, or as a logarithmic change, called the logarithmic
rate of return. Let’s assume for now that the asset pays no cash flows be-
tween t and t + τ . The two definitions are expressed in the following pair of
identities:

St+τ ≡ (1 + τr arith
t,τ )St

St+τ ≡ eτrt,τ St

where r arith
t,τ is the time-t, τ -period arithmetic rate of return, and rt,τ the time-

t τ -period rate of logarithmic rate of return on the asset. Time is usually
measured in years. If returns did not vary over time, we could simplify the
notation by dropping the first subscript, t. If the periodic rate of return did
not vary with the horizon τ , we could drop the second subscript, t, and write
r arith

t and rt. In this book, we’ll generally adhere to a convention that Roman
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symbols such as t, T, and t1, represent dates, while Greek symbols such as
τ and τ1 represent an elapsed time.

The rates of return are the increments to the asset’s value. The quantities
1 + r arith

t,τ and ert,τ are called the gross rates of return, since they include
the value of the asset, not just the increment. The gross return is just the
proportional change in the asset price:

St+τ

St
= 1 + τr arith

t,τ = eτrt,τ

The change in the asset price itself is

St+τ − St = τr arith
t,τ St = (eτrt,τ − 1)St

The logarithmic return is the logarithmic change in asset price or the
increment to the logarithm of the price:

rt,τ = 1
τ

log
(

St+τ

St

)
= 1

τ
[log(St+τ ) − log(St)]

Putting these definitions together gives us two equivalent ways of expressing
the relationship between arithmetic and log returns:

r arith
t,τ = 1

τ
(eτrt,τ − 1)

rt,τ = 1
τ

log(1 + τr arith
t,τ )

The choice of units is a common source of confusion. In the definitions
above, and in most computations, we treat rt,τ and r arith

t,τ as decimals. We have
to multiply by 100 to get a return in percent, the format in which returns
are most often reported. Yet another unit for expressing returns is basis
points, 0.0001 or hundredths of a percent, typically used to report changes,
spreads, or differences in returns. A full percentage point is often called a
“point” in market jargon. The gross return and the change in asset price are
measured in currency units. For example, if the price was 100 a year ago,
and 103 today, we have 103 = (1.03)100, so the arithmetic rate of return is
0.03 expressed as a decimal, or 3 percent, or 300 bp. The logarithmic rate
of return is log

( 103
100

) = 0.02956, as a decimal.
In the end, we care primarily about profit and loss (P&L) in dollars,

so it doesn’t really matter whether we describe returns as arithmetic or
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logarithmic. But there can be practical advantages to using one rather than
the other, and logarithmic returns also have a conceptual advantage over
arithmetic. Logarithmic returns represent the constant proportional rate at
which an asset price must change to grow or decline from its initial to
its terminal level, taking into account the growth in the “base” on which
returns are measured. We’ll discuss this in the context of stochastic processes
shortly.

It is therefore easier to aggregate returns over time when they are ex-
pressed logarithmically, using the rule er1τ1er2τ2 = er1τ1+r2τ2 . Suppose we are
interested in monthly and in annual returns, and are measuring time in
months. We have a series of month-end asset prices S0, S1, S2, . . . , S12, with
S0 the asset price at the end of the last month of the prior year. The one-
month logarithmic returns are

rt,t+1 = log(St) − log(St−1) t = 1, 2, . . . , 12

The one-year logarithmic return is the sum of the one-month logarithmic
returns:

log
(

S12

S0

)
= log(S12) − log(S0) =

12∑
t=1

rt,t+1

The arithmetic rates of return are not conveniently additive in this way.
The one-year arithmetic rate of return is the geometric average of one-month
rates:

S12

S0
− 1 = S1

S0

S2

S1
· · · S12

S11
− 1 =

12∏
t=1

(1 + r arith
t,t+1) − 1

This is a more cumbersome calculation than for logarithmic returns. For
example, if we know that an investment had quarterly logarithmic returns of
1, 1.5, −0.5, and 2.0 percent in successive quarters, we can see immediately
that its logarithmic return for the year was 4.0 percent. If an investment
had quarterly arithmetic returns of 1, 1.5, −0.5, and 2.0 percent, the annual
arithmetic return is a harder-to-compute 4.0425 percent.

An even more striking example is this: If you have a positive logarithmic
return of 10 percent one day, and negative 10 percent the next, you get back
to the original asset price; that is, the gross two-day return is zero. If you
have a positive arithmetic return of 10 percent one day, and negative 10
percent the next, the gross two-day return is negative. One context in which
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the distinction between arithmetic and logarithmic returns is quite important
when returns are compounded is leveraged ETFs, ETFs that are constructed
using derivatives contracts and pay a multiple of the daily arithmetic return
on an index. Because their returns are defined daily, in a volatile market there
can be a large difference between the average daily return on a leveraged
ETF and the return over longer periods of time.

However, arithmetic returns are easier to aggregate over positions. Let’s
introduce a bit of notation we’ll use frequently. Let St,n, n = 1, 2, . . . , N
represent the prices of N securities and xn, n = 1, 2, . . . , N the amounts (e.g.,
the number of shares or ounces of gold) of those N securities in a portfolio.
To keep things simple, assume all the positions are long. The time-t value of
the portfolio is

Vt =
N∑

n=1

xnSt,n

and the arithmetic return between time t and t + τ is

Vt+τ

Vt
− 1 = 1

Vt

N∑
n=1

xn(St,n − St+τ,n)

= 1
Vt

τ

N∑
n=1

xnr arith
t,τ,nSt,n

= 1
Vt

τ

N∑
n=1

ωnr arith
t,τ,n

where

ωn = xnSt,n

Vt
n = 1, 2, . . . , N

are the weights of the positions in the portfolio. (Yes, we needed three
subscripts on r arith

t,τ,n to distinguish the date, the time horizon, and the security.)
The portfolio return can be expressed as a weighted average of the arithmetic
returns of the assets. There is no corresponding simple relationship between
the logarithmic returns of the portfolio and those of the positions.

Another advantage of logarithmic returns becomes clearer later in this
chapter when we discuss the standard asset pricing model. No matter
how large in magnitude a logarithmic return is, an asset price will remain
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F IGURE 2.1 Approximating Logarithmic by Arithmetic Returns
Arithmetic (x) and logarithmic (log (1 + x)) returns for x between 0 and 80 percent.

positive; as the return approaches negative infinity, the asset price will ap-
proach, but never reach, zero. An arithmetic return less than −100 percent,
in contrast, leads to a negative asset price, which generally makes no sense.
This convenient property of logarithmic returns is on motivation for the
typical assumption in financial modeling that asset returns are lognormally
distributed.

For small values of rt,τ or r arith
t,τ (that is, small increments St+τ − St), the

approximate relationship

rt,τ ≈ r arith
t,τ

holds. This approximation of logarithmic by arithmetic returns is a useful
and usually innocuous simplification that is widely used in risk measurement
practice. As seen in Figure 2.1, the approximation breaks down for large
positive or negative values of rt, which arise when the time interval τ is large,
or the return volatility is high. We discuss the approximation further in the
context of risk measurement in Chapters 3 and 5.

To see the accuracy of the approximation more exactly, express the log
return by expanding log(1 + r arith

t,τ ) around the point r arith
t,τ = 0 to get

rt,τ = r arith
t,τ − 1

2
(r arith

t,τ )2 + 1
3

(r arith
t,τ )3 + · · ·
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The Taylor expansion is equal to the arithmetic return, plus a series
in which negative terms are succeeded by smaller-magnitude positive
terms.1

The log return is smaller than the log of the arithmetic gross return.
Thus treating log returns as though they were arithmetic results in a smaller-
magnitude estimate of the change in asset price. The opposite is true for
negative returns. The table in Example 2.1 compares return computations.

Example 2.1 (Accuracy of Arithmetic Return Approximation) The return
in the first column is an arithmetic return. The corresponding log return, that
is, the log return that would produce the same change in asset price St+τ − St,
is displayed in the second column, and is always a smaller number.

r arith
t,τ log(1 + r arith

t,τ )

−0.50 −0.693
−0.10 −0.105
−0.01 −0.010

0.01 0.010
0.10 0.095
0.50 0.405

2.2 RISK AND SECURIT IES PRICES: THE
STANDARD ASSET PRIC ING MODEL

The standard model in finance theory begins by relating security prices to
people’s preferences and to security payoffs via an equilibrium model of asset
prices and returns. Such a model explains observed asset price behavior as
the outcome of a market-clearing process rooted in fundamentals: investor
preferences and the fundamental productivity and risks of the economy. The
mechanisms behind this relationship are individual portfolio optimization
and equilibrium relationships. A common approach is the representative
agent model, which abstracts from differences among individuals or house-
holds by defining equilibrium as a state of affairs in which prices have ad-
justed so that the typical household is just content to hold its asset portfolio
and has no incentive to trade assets.

1If rt,τ < 0, all the terms are negative.
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2.2.1 Def in ing Risk: States, Security Payof fs , and
Preferences

Investing can be thought of as choices among distributions. To reduce uncer-
tainty to probability distributions is a gross oversimplification, since many
of the most important uncertainties are “Knightian,” and not susceptible
to quantification. But in modeling with a distributional hypothesis, even
if the distribution is not normal, or not even explicitly stated, this is an
oversimplification we have to make.

To set up the standard model, we define the “primitives,” the facts about
the world. Preferences, in the model world of standard theory, are about two
things:

Intertemporal consumption decisions People can be motivated to defer
consumption now only in exchange for higher consumption in the
future.

Risk aversion People prefer a sure thing to any risky prospect with the
same expected value.

In this model world, choices are predictable and take place in a well-
specified environment. Outside this world, preferences may include other
motivations, such as avoiding losses, and behavior can be surprisingly sus-
ceptible to influences that have little bearing on getting “more,” and which
the standard theory can only consider distractions. These phenomena are
studied by behavioral finance, and there is a lively debate on whether they
are incidental to the more important regularities identified by the standard
theory, or are in fact central to explaining financial phenomena in the real
world.

We need a probability model, that is, a state space and probabilities
assigned to each state and all their possible combinations. This tells us what
states of the world are possible. State spaces can be discrete and finite,
discrete and countable, or continuous. If the state space is finite, with I
possible states, we can denote the probability of each by πi , i = 1, . . . , I.
Security returns or payoffs are different in each state, that is, they have a
probability distribution, with the probabilities of particular values equal to
the probabilities of the states in which the payoffs have those values. Risk is
then defined as the positive probability of ending up in a state of the world
in which returns or consumption are low.

As clear as this definition of risk seems, one immediately runs into
knotty problems, particularly that of ranking securities that have different
return probability distributions. Suppose we’re comparing two securities.
If one has a higher payoff than the other in every state of the world, it is
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clearly preferable. But what if it has a higher payoff in some, but a lower
payoff in other states? There are a few common approaches to ranking
securities:

Mean-variance dominance provides a partial ordering of investments,
ranking those with the same variance but a higher mean, or those
with the same mean but a lower variance, as preferable. But this
approach doesn’t rank securities with both a different mean and
variance. Also, the next section describes why the correlation of a
security’s returns with the general state of the economy in the future
is important. A security that pays off when times are bad can be
preferred to another that has a higher expected return and lower
volatility but pays off most in good times when you least need the
extra income.

Stochastic dominance focuses on the entire distribution of payoffs, and
stipulates says that payoff distributions that are skewed more to high
payoffs are ranked higher. Comparing two payoff distributions, if
one generally has a lower probability of very low returns and a
higher probability of very high payoffs than the other, it may be
ranked higher, even if it has a lower mean and higher variance. We
examine “fat-tailed” and skewed distributions in Chapter 10.

Expected utility is an approach in which investments are ranked by the
expected value of the investor’s utility function, a measure of the
satisfaction or welfare he derives from different amounts consump-
tion.

Preferences can be summarized in an expected utility function, the ar-
guments of which are consumption or wealth, now and at future dates.
For simplicity, we will deal with utility as a function of consumption at a
set of discrete dates t = 0, 1, . . . Time 0 represents the present, and u(ct)
represents utility at time t as a function of consumption ct. This leads to
a time-separable utility function, in which expected utility is a sum of cur-
rent and expected utilities. There is no money in this asset pricing model:
the units of ct, the consumption good, are called the numéraire for the
model.

To be consistent with the basic premisses of the model, the utility func-
tion has to discount future consumption relative to consumption in the
present. We do this via a parameter 0 < δ < 1 representing the pure rate of
time preference. In our examples, we’ll set δ = 0.95, meaning a risk-free in-
terest rate of about 5 percent makes the individual barely indifferent between
a little additional utility now and later.
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The utility function, of course, must have positive marginal utility
u′(ct) > 0 for any value of ct; more is better. To display risk aversion, the
marginal utility of consumption also has to decline as the level of consump-
tion rises, that is, utility is a concave function of consumption, u′′(ct) < 0.
With such a utility function, the prospect of consuming either two meatballs
or no meatballs, with a 50-50 chance of each, will be less attractive than
consuming one meatball for sure. More is still better, but much more is
not quite that much better. The Arrow-Pratt measure of risk aversion is a
standard measure equal to −cu′′(c)/u′(c).

Example 2.2 A simple example is logarithmic utility:

u(c) = log(c)

Marginal utility is

u′(c) = 1
c

which is positive but declining as c gets larger, that is, u′′(ct) < 0. The Arrow-
Pratt measure of risk aversion for logarithmic utility is

−c
u′′(c)
u′(c)

= c
1
c2

c = 1

In a two-period model, consumption today is a quantity c0 that is known
with certainty once savings decisions are taken. Consumption tomorrow is
a random quantity c(i)

1 , i = 1, . . . , I. The expected utility function is

u(c0) + δE [u(c1)] = u(c0) + δ

I∑
i

πi u(c(i)
1 )

where E[x] represents the mathematical expected value of the random vari-
able x. The future payoff of a security is a random variable, that is, it varies
by state. It can be a relatively simple one, such as a two-state model in which
a coin toss determines whether the security will have a low or a high pay-
off, or a relatively complex one, for example, a normally distributed variate
with a payoff anywhere on (−∞,+∞), but with small-magnitude outcomes
much more likely than extreme ones.

Let’s flesh out the simpler example, a two-state, two-period model with
two securities, one risky and one risk-free. The two periods are labeled 0
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and 1. The payoff on one unit of the security at t = 1 can be represented as
a random variable y1, and the payoff in each state by y(i)

1 , i = 1, 2. We’re
giving the payoffs a subscript “1” because, while we’re only looking at
one risky security at the moment, in most contexts we study several risky
securities or risk factors. The risk-free security has a payoff of 1 in each
state. The prices at time 0 of the risky and risk-free securities are denoted S1

and S f .
We also need to stipulate what resources are available to the individual.

The simplest assumption is that in each period and in each state, a certain
“endowment” of the consumption good is settled upon him like manna.
This is called the endowment process, denoted (e0, e1, . . .), and with the
e1, e2, . . . random variables. There is no uncertainty about consumption in
the present, only about the future. The endowment process is the model’s
representation of the output fundamentals of the economy. In this highly
stylized model, there is no concept of investment in real productive capacity.
The time-t endowment in each state is denoted e(i)

t , i = 1, 2.
We can compute returns from the asset prices. Any risky asset has a

state-dependent arithmetic rate of return rn, with realizations

r (i)
n = y(i)

n

Sn
− 1 n = 1, 2, . . . ; i = 1, . . . , I

r f = 1
S f

− 1

The second equation describes the relationship between the price S f of the
risk-free asset and its return r f . (We are sticking to arithmetic rates in the
examples of this section because we are dealing with a discrete-time problem.
We can also simplify the subscripts because both the date [0] and the period
[1] are unambiguous.)

As we will see shortly, we can always calculate a risk-free rate, even
if there isn’t really a tradeable risk-free asset. So we can define the excess
returns of asset n as

rn − r f n = 1, . . .

The excess return rn − r f is a random variable, with realizations r (i)
n − r f in

different states. The expected return of an asset is defined as μn = E [rn].
The expected value of the excess return of asset n

E
[
rn − r f

] = μn − r f n = 1, . . . , N
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is the risk premium of asset n, the expected spread between the equilibrium
return on asset n and the risk-free rate.

Example 2.3 In the two-state, two-period version, the individual receives
a known amount e0 of the consumption good at t = 0 and a random
amount e1 at t = 1. We can summarize the setup of the example in this
table:

State e(i )
1 y(i)

1 πi

i = 1 1.25 1.50 0.90
i = 2 0.50 0.25 0.10

In State 2, consumption is very low, but it also has a low probability. The
risky security behaves like “nature,” but is even more generous in the high-
probability state and even stingier in the low-probability state.

2.2.2 Opt imal Portfo l io Select ion

The next step is to set up the individual’s optimization problem. The indi-
vidual is to maximize the expected present value of utility u(c0) + δE [u(c1)],
subject to budget constraints

c0 = e0 − xf S f − x1S1

c1 = e1 + xf + x1y1

The choice variables are x1 and xf , the amounts of the risky and risk-free
securities purchased. The individual is a price taker in this problem; that is,
he responds to asset prices as given by the market and can’t influence them.
We will see shortly how the equilibrium prices are determined.

To solve the problem, substitute the constraints into the utility function
to get a simple, rather than constrained, optimization problem

max
{x1,xf }

u(e0 − xf S f − x1S1) + δE
[
u(e1 + xf + x1y1)

]
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The first-order conditions for solving this problem are:

S1u′(e0 − xf S f − x1S1) = δE
[
y1u′(e1 + xf + x1 y1)

]

= δ

s∑
i

πi y
(i)
1 u′

(
e(i )

1 + xf + x1y(i)
1

)

S f u′(e0 − xf S f − x1S1) = δE
[
u′(e1 + xf + x1y1)

]

= δ

s∑
i

πi u′
(
e(i )

1 + xf + x1y(i)
1

)

Each of these first-order conditions has the structure

Sn = δ
E [ynu′(c1)]

u′(c0)
n = 1, f

setting the asset price equal to the trade-off ratio between present and ex-
pected future satisfaction. This ratio is called the marginal rate of substitu-
tion or transformation.

Example 2.4 If utility is logarithmic, the individual solves

max
{x1,xf }

log(e0 − xf S f − x1S1) + δE
[
log(e1 + xf + x1y1)

]

leading to the first-order conditions

δE
[
y(e1 + xf + x1y1)−1] = S1(e0 − xf S f − x1S1)−1

δE
[
(e1 + xf + x1y1)−1] = S f (e0 − xf S f − x1S1)−1

Substituting the parameters of our example, we have

0.95[0.9 · 1.50(1.25 + xf 1.50 + x1)−1 + 0.1 · 0.25(0.50 + xf + x10.25)−1]
= S1(1 − xf S f − x1S1)−1

0.95[0.9(1.25 + xf 1.50 + x1)−1 + 0.1(0.50 + xf + x10.25)−1]
= S f (1 − xf S f − x1S1)−1

We can solve these two equations numerically for the asset demand
functions xf (S f , S1) and x1(S f , S1). For example, for S f = 0.875 and
S1 = 1.05—which are not necessarily the equilibrium prices—we have
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xf (0.875, 1.05) = −0.066 and x1(0.875, 1.05) = 0.062. At those prices, the
individual will borrow at the (arithmetic) risk-free rate of 0.875−1 − 1 =
0.1429 to invest in more of the risky asset. The latter, at the stipulated
prices, would have an expected return of

0.9
(

1.50
1.05

− 1
)

+ 0.1
(

0.25
1.05

− 1
)

= 0.3095

and a risk premium of 16.67 percent.
The two asset demand functions are each downward-sloping in its own

price and upward-sloping in the price of the other asset. A rise in the price
of each asset decreases demand for it, but increases demand for the other
asset.

2.2.3 Equi l ibr ium Asset Prices and Returns

The final step is to nail down the equilibrium asset prices S f and S1. In the
model environment we have set up, there is an easy way to do this. Since
we have specified the individual’s endowment, we can dispense with setting
up a model of the production and supply side of the economy. Instead, we
cast the individual as a representative agent, imagining him as either the one
individual in the economy or as one of myriad identical individuals.

Equilibrium prevails if the net demand for each asset is zero. The supply
of the consumption good is already set by the endowment process, and there
are no positive quantities of any other assets. The securities in our example
are shadow entities, and their prices must adjust so the representative agent
desires to hold exactly zero amounts of them.

In this model, therefore, we know the individual will eat exactly his
endowment, that is,

c(i)
t = e(i)

t t = 1, . . . ; i = 1, . . . , I

so we know not only the endowment process, but the consumption process.
This leads to a solution of the equilibrium problem. It also provides a simple
approach to asset pricing that has had enormous influence on academic and
practitioner work.

Each asset price is a similar function of the same set of arguments,
namely, the marginal rate of substitution between utility now and utility
later. For the two-security, two-period problem, the first-order conditions
are
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δE
[
y1u′(e1)

] = δ

I∑
i

πi y
(i)
1 u′

(
e(i)

1

)
= S1u′(e0)

δE
[
u′(e1)

] = δ

I∑
i

πi u′
(
e(i)

1

)
= S f u′(e0)

or

S1 = δ
E [y1u′(e1)]

u′(e0)

S f = δ
E [u′(e1)]

u′(e0)

Example 2.5 In our example, the first-order conditions simplify in equi-
librium to discounted expected values of the marginal utilities of the future
payoffs of each security:

S1 = δe0E
[
y1e−1

1

]
= 0.95

(
0.9

1.50
1.25

+ 0.1
0.25
0.50

)
= 1.0735

S f = δe0E
[
e−1

1

]
= 0.95

(
0.9

1
1.25

+ 0.1
1

0.50

)
= 0.874

When we first looked at the first-order conditions, these trade-offs were
seen to depend on the individual’s portfolio choices; given the prices S1

and S f , we know what the household will choose. But in the no-trade
equilibrium of the representative agent model, given agent preferences and
the endowment process, choices and prices mutually adjust. Thus, given
future consumption, state-by-state, we know what the shadow asset prices
must be.

This leads to a set of pricing arguments that varies by state, and combines
information about both pure time discounting and risk aversion. It is called
the stochastic discount factor (SDF), pricing kernel, pricing functional, or the
state prices, depending on which of its characteristics you want to emphasize.
We’ll denote it κ. State prices are a random variable

κi = δ
u′

(
c(i)

1

)
u′(c0)

i = 1, . . . , I
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The SDF is a state-by-state list of marginal rates of transformation of present
for future consumption, in equilibrium and given the current and future
endowments.

The first-order conditions can be rewritten so as to display the asset
prices as simple linear functions of κ, the payoffs, and their probabilities:

S1 = E [y1κ] =
I∑
i

πi y
(i)
1 κi

S f = E [κ] =
I∑
i

πiκi

The state-price approach simplifies asset pricing because the state prices
come directly out of the pure intertemporal optimization problem, in which
there are no assets, only a consumption process over time. First we identify
the “pricing calculator”; information about individual asset payoffs can
then be added in a later step. The pricing formulas hold for any riskless
or risky asset n, and can be computed as long as we know its payoffs y(i)

n ,

i = 1, . . . , I:

Sn = E [ynκ] =
I∑
i

πi y(i)
n κi n = 1, 2, . . .

The payoffs are different, but the state price density κ is the same for
all n. That’s what we mean by “shadow” assets. They don’t really have
to exist for us to price them this way, and we don’t need a complete list
of assets in advance of pricing any individual one of them. In particular,
there does not have to actually be a riskless asset for us to know what
its price would be if such a thing were to exist. That is convenient, be-
cause, as we see in Section 2.5, it is hard to find an asset that is truly
riskless.

The pricing formula can be expressed equivalently in terms of
returns as

1 = E [(1 + rn)κ] =
I∑
i

πi
(
1 + r (i)

n

)
κi

1 = E
[
(1 + r f )κ

] = (1 + r f )
I∑
i

πiκi
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The risk-free rate is higher when future consumption is higher on average
and less uncertain. The price of the risk-free asset is the expected value of
the SDF, and is related to r f , the risk-free rate of return, by

S f = 1
1 + r f

= E [κ] = δE
[

u′(e1)
u′(e0)

]

=
I∑
i

πiκi = δ
1

u′(c0)

I∑
i

πi u′
(
c(i)

1

)

Example 2.6 The state prices in our example are

State κi

i = 1 0.76
i = 2 1.90

The state price for state 1, κ1 = 0.76, is much smaller than κ2 = 1.90,
because consumption is higher in state 1, lowering its marginal utility and
thus the value of an additional unit of it.

The risk-free return is (0.874)−1 − 1 or 14.4 percent, and the returns
and excess returns of the risky asset in each state are

State r (i)
1 r (i)

1 − r f

i = 1 39.7 25.3
i = 2 −76.7 −91.1

The expected risky return and excess return are 28.1 and 13.7 percent.

The risk premium is just a different way of expressing the price of a
risky asset, but has an illuminating relationship to the stochastic discount
factor. Subtract the equilibrium pricing condition of risky asset n from that
of the risk-free asset:

E
[
(rn − r f )κ

] = 0

The expected value of the excess return on any risky asset times the SDF
equals zero. In other words, at equilibrium prices, you are exactly compen-
sated for the risk you take.
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We’ll transform this expression using the covariance, which measures
the extent to which fluctuations in two random variables coincide. For any
random variables x and y, the covariance is defined as

Cov(x, y) = E [(x − E [x])(y − E [y])]

Next, use the relationship Cov(x, y) = E [xy] − E [x] E [y] for any random
variables x and y to get

E
[
(rn − r f )κ

] = Cov(rn − r f , κ) + E
[
rn − r f

]
E [κ] = 0

implying

E
[
rn − r f

]
E [κ] = − Cov(rn − r f , κ)

Now, r f is not random, but known at t = 0, so Cov(rn − r f , κ) = Cov(rn, κ)
and

E
[
rn − r f

] = −Cov(rn, κ)
E [κ]

= −Cov(rn, κ)
Var(κ)

Var(κ)
E [κ]

The first term, Cov(rn,κ)
Var(κ) , is the regression coefficient of the risky security’s

returns on the SDF and is called the beta of the risky security to the SDF κ.
The beta is often interpreted as the variation in the risky security’s return
that can be “explained by” or “predicted from” the SDF’s variation across
states. The beta depends on the return distribution of the specific security as
well as—via the SDF—preferences and the endowment. It is positive when
the risky security has high payoffs in high-SDF states, that is, states in which
consumption is low and its marginal utility is high.

The second term,

Var(κ)
E [κ]

= (1 + r f ) Var(κ)

is a measure of aggregate risk called the price of risk. It is the same for all
assets and is driven by preferences (via δ and the type of utility function) and
the variance of future consumption across states. The variance of the SDF
can be high either because the dispersion of future consumption, that is, the
fundamental risk in the economy, is high, or because risk aversion is high,
pulling apart the marginal rates of transformation for a given distribution
of future consumption.
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If the beta is negative, that is, the risky security tends to pay off more
when the SDF is low and the endowment is plentiful, and the SDF also has
high dispersion, then prices of risky assets will be driven lower, and their
risk premiums higher; hence the minus sign.

Example 2.7 Continuing our example, we have Var(κ) = 0.650 and
Cov(rn, κ) = −0.7125, so the beta is

Cov(rn, κ)
Var(κ)

= −1.0965

and the price of risk is

Var(κ)
E [κ]

= 0.7435

The risky security has a positive risk premium, since it has a high payoff
in the high-consumption state, when you need that high payoff the least,
and vice versa.

2.2.4 Risk-Neutral Probabi l i t ies

There is an alternative point of view on this approach to pricing via utility
and endowments. Instead of taking the expected value of the asset’s payoffs,
weighted by the stochastic discount factor, we’ll ask an “inverse” question:
What probabilities do we need to be able to derive the equilibrium asset
price, but now as an expected present value discounted at the risk-free rate?
These new probabilities are called risk-neutral probabilities π̃i , i = 1, . . . , I,
in contrast to the real-life subjective or physical probabilities we have used
up until now to compute expected values. Substituting the risk-neutral for
the physical probabilities, but leaving the state space and the set of outcomes
unchanged, leads to the risk-neutral probability measure.

In the two-period model, the risk neutral probabilities are defined as

π̃i = πiκi∑I
i πiκi

= πiκi

1 + r f
i = 1, . . . , I

This gives us a way of expressing security prices as a straightforward
expected present value of the payoffs, weighted using the risk-neutral
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probabilities, discounting by the risk-free rate. The standard pricing equa-
tion can be rewritten

Sn = E [ynκ] = Ẽ [yn]
1 + r f

= 1
1 + r f

I∑
i

π̃i y(i)
n n = 1, 2, . . .

The notation Ẽ [x] denotes the expected value of x, using risk-neutral
rather than physical probabilities.

To provide some intuition on risk-neutral probabilities, think for a mo-
ment about how asset pricing works in our model. The assets are traded in
the market, and the price of each claim will depend on the payoffs of the
asset in different states, the endowment or “market” payoff in each state,
the probability of each state, and the desirability of getting an additional
payoff in that state via investment in the asset. If there are many traders
or agents, “desirability” is aggregated through the market. In a representa-
tive agent model, it depends on endowments; the marginal utility of future
consumption is higher in states in which the endowment is low.

Desirability is important. If two claims have the same payoff in two
equiprobable states, they won’t have the same price if consumption goods
are scarcer in one state than in the other. The impact of return distributions
is blended with that of the market’s risk preferences.

If there is no arbitrage, the prices of the assets therefore imply a probabil-
ity distribution of states. It may be quite different from the “true” or physical
distribution, but all the claims will be priced consistently with it. Conversely,
if this is not true, that is, if the prices of two claims reflect different risk-
neutral probabilities of some states, then an arbitrage profit is available.

We can also see that the risk-neutral expected return is equal to the
risk-free rate:

1 = E [(1 + rn)κ] = Ẽ [(1 + rn)]
1 + r f

⇒ Ẽ [rn] = r f

Suppose we have a set of securities that each provide a payoff of $1 in one
of the I future states, and 0 otherwise. These securities are called elementary
or contingent claims or state price securities. There is an elementary claim
for each state i = 1, . . . , I, with a price εi .

Even without knowing the individual prices of the elementary claims,
we can make some statements about them. If you had a portfolio of 1 unit of
each of the elementary claims, you would receive 1 unit of the consumption
good regardless of the future state, so it would be equivalent to having a
risk-free bond. The sum of the prices of the elementary claims must therefore
equal the price of a risk free-bond S f = 1

1+r f
.
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To find the individual prices of the elementary claims, write out the
pricing formula for a security that pays off one unit in one state, say i :

εi = π1κ1 · 0 + · · · + πiκi · 1 + · · · + πIκI · 0 = πiκi i = 1, . . . , I

But then the risk-neutral probabilities are also equal to the present values of
the elementary claims prices:

π̃i = (1 + r f )πiκi = (1 + r f )εi i = 1, . . . , I

These properties also provide an equivalent way of valuing any asset as the
price of a bundle of elementary claims.

Example 2.8 In our two-state log utility example, the risk-neutral proba-
bilities and elementary claim prices are

State πi π̃i εi

i = 1 0.90 0.78 0.68
i = 2 0.10 0.22 0.19

The risk-neutral probability for “bad” state 2 is more than double the phys-
ical probability, reflecting the desire of the risk-averse individual to insure a
higher level of consumption in that state.

Risk-neutral probabilities combine information about the physical prob-
abilities with information about preferences. They are important for two rea-
sons. First, they provide an alternative pricing approach for securities that
can be hedged by other securities, plain-vanilla options providing the classic
example. Second, as we see in Chapters 10 and 14, we can not only com-
pute asset prices using risk-neutral probabilities. We can also use observed
asset prices to estimate risk-neutral probabilities. A risk-neutral probability
distribution can be extracted from forward and option prices, and can shed
a great deal of light on market sentiment regarding risk.

2.3 THE STANDARD ASSET DISTRIBUTION MODEL

The standard risk measurement model we describe in this section is focused
not so much on the asset price itself, or even its mean, as on its potential
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range of variation; we are interested in the volatility, not the trend. The
standard model says little on the trend of asset prices.

The starting point for the model is the geometric Brownian motion or
diffusion model of the behavior over time of an asset price or risk factor St.
This model is also the basis for the Black-Scholes option pricing model, and
is generally a point of departure for analysis of asset return behavior.

In this standard model, returns are normally distributed. The standard
model can be useful when overall or “main body” risk is important, as
opposed to extreme moves. The model can also serve as a building block,
or a teaching tool. But there is extensive evidence, which we review in
Chapter 10, that returns are not normally distributed.

First, we will show how this model is built, so that we can understand its
implications. We are interested in price fluctuations, so it is the asset returns
that we ultimately need to understand. We start with a model of asset
returns, and show how to derive the geometric Brownian motion model of
the asset price from it. Finally, we see how to measure return volatility using
the model.

To model the variability of risk factors over time, we look for a stochastic
process that, for a suitable choice of parameters, will mimic the behavior seen
in real-world risk factors. A stochastic process is an indexed set of random
variables; the index is taken to be time. If we could model an observable
risk factor exactly using a particular stochastic process, the historical time
series of risk factor values would still not itself be the stochastic process.
Rather, it would be a sample path of the stochastic process. The number
of possible sample paths depends on the sample space of the stochastic
process.

2.3.1 Random Walks and Wiener Processes

We’ll set out a model of rt, the logarithmic asset return, and then build
on that to derive a model of asset price behavior. The geometric Brownian
motion model builds on a stochastic process called the random walk. A
random walk is a random variable that

� Is a function of “time” t, which runs from zero (or some arbitrary
positive number) to infinity

� Starts at (0, 0)
� Adds increments to its level at time steps of length �t
� Moves up or down at each time step by an amount

√
�t

� Moves up with probability π and down with probability 1 − π
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Let’s denote the steps or increments to the random walk by Yi and its
position or state after n steps by

Xn =
n∑

i=1

Yi

If we chop t into finer and finer steps, that is, make �t smaller, n will be
larger. The Yi are independent and identically distributed. The number of
moves up (Yi > 0) is therefore a binomially distributed random variable with
parameters n and π . Denoting by k the number of up-moves in the first n
steps, the state or position of the random walk Xn can be written as

Xn = [k − (n − k)]�t = (2k − n)�t

since the number of down-moves (Yi < 0) in the first n steps is n − k.
There are 2n possible paths (Y1, . . . , Yn), each with a probability 1

2n .
There are 2n + 1 possible values (−n�t, . . . ,−�t, 0,�t, . . . , n�t) of the
position Xn, with the probability of each equal to the that of the corre-
sponding binomially distributed number of up-moves. Apart from the ex-
treme “straight up” and “straight down” paths that lead to Xn = −n�t and
Xn = −n�t, there is more than one way to reach each possible value of Xn.

It’s convenient to set π = 1
2 . The mean of each step is then

E [Yi ] = E
[

1
2

√
�t + 1

2

(
−√

�t
)]

= 0 i = 1, . . . , n

and its variance is

Var[Yi ] = E
[
Y2

i

] − (E [Yi ])2 = 1
2

(√
�t

)2
+ 1

2

(
−

√
�t

)2
=�t i = 1, . . . , n

From these facts, together with the independence of the steps, we can com-
pute the variance of the position after n steps:

E [Xn] = 0

Var[Xn] = n�t

The time elapsed after n steps is t = n�t, so one property we can see
right away is that the variance of the state of a random walk is equal to
the time elapsed t, and thus its standard deviation is equal to

√
t. This is an
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F IGURE 2.2 Sample Path of a Random Walk
Plot shows the first 16 positions of one simulation of a random walk. The total
time elapsed in the first 16 steps is set to t = 1, so the time interval between
adjacent steps is �t = 1

16 and the magnitude of the increments is
|Yi | = 1√

�t
= 1√

16
= 1

4 , i = 1, . . . The solid dots show the value the position takes on
at the start of each time interval, and the open circles show the points of
discontinuity.

important relationship between volatility and the passage of time that we
will see repeatedly in different forms.

The random walk is a discrete time or discontinuous stochastic process,
as illustrated in Figure 2.2. Any value of t will do, so let’s set t = 1, so that
�t = 1

n . But now let the number of the time steps go to infinity by holding
t = n�t = 1 constant, letting n → ∞ and �t → 0. As the number of time
steps grows, the mean and variance of the position Xn remain unchanged at
0 and 1, respectively.

The magnitude of the low-probability extreme states Xn = ±n�t = ±1
remains constant, but the probability of reaching them decreases as the
number of time steps increases, even though the total time elapsed and the
variance of the state Xn are not increasing. Figure 2.3 displays the distribu-
tion of the terminal position Xn for an increasing fineness of the time steps
between time 0 and 1.

But computing the probabilities under the binomial distribution of the
number of up moves, and thus of Xn, becomes difficult as the number of time
steps grows. It is also not necessary. Figure 2.3 suggests that the distribution
of the terminal position Xn converges to the normal. In fact, we can invoke
the central limit theorem to show that the distribution of Xn converges to a
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F IGURE 2.3 Convergence of a Random Walk to a Brownian Motion
The plots display the probability density of Xn, the terminal position of a random
walk over an interval of length 1, with n = 4, 16, 64 time steps and with the
probability of a step in either direction set to π = 1

2 .

standard normal random variable. The mean and variance haven’t changed,
but we have an easier distribution than the binomial to work with.

The stochastic process to which the state Xn of the random walk con-
verges is called a Brownian motion or Wiener process Wt. The value of Wt

is a zero-mean normal variate with a variance equal to t:

Wt ∼ N(0,
√

t)

We have defined an increment to a Brownian motion as the limit of a
random walk as its time steps shrink to zero, but this is technically not nec-
essary. A Brownian motion is defined uniquely by the following properties:

1. It starts at W0 = 0.
2. For any t ≥ 0 and τ > 0, the increment to the process over the period

t + τ is normally distributed:

Wt+τ − Wt ∼ N(0,
√

τ )

Each such increment can be thought of as composed of infinitely many
random walk steps.

3. The increment Wt+τ − Wt is independent of the history of the process
up to time t. In other words, the random variables Wt and Wt+τ − Wt

are independent. This is called the martingale property. In fact, if we
chop all of history into intervals such that 0 ≤ t1 < t2 < · · · < tn < ∞,
the increments Wt1 , Wt2 − Wt1 , · · · , Wtn − Wtn−1 are all independent.

4. Every sample path is continuous.

All other properties of Brownian motion can be derived from this definition.
The last one is a major difference from the random walk, which, as we saw,
is discontinuous.
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Some of Brownian motion’s properties are initially counterintuitive,
such as the fact that its total variation process, the expected value of the
total distance a Brownian motion moves over any interval, no matter how
short, is infinite. To see this, recall that the magnitude of the random walk
step is |√�t| = √

�t with certainty, so that is also its expected magnitude.
But then the total distance traveled over the interval t is, with certainty,
equal to

n
√

�t = t
�t

√
�t = t√

�t

and its limit as �t → 0 is infinity. This is one aspect of Brownian motion’s
“urge to wander.” It is constantly vibrating, so if you take the path it has
traveled, even over a very short time, and uncurl it, it is infinitely long, and
composed of infinitely many tiny, sharp, up or down moves. For this reason,
although continuous, Brownian motion is not smooth. In fact, it cannot be
differentiated: ∂Wt

∂t does not exist.
Yet its quadratic variation process, the expected value of the sum of

the squared distances it moves over any interval, no matter how many, is
finite and equal to the length of the interval. The quadratic variation of a
Brownian motion is another form that the relationship between volatility
and the passage of time takes. Although it has a strong urge to wander “in
the small”—infinite total variation—it wanders in a contained way “in the
large.”

To gain intuition about these properties, let’s look at Figure 2.4, which
illustrates the convergence of a random walk to a Brownian motion. It
shows a single sample path of a Brownian motion, sampled at progressively
finer subintervals of the interval (0, 1). It starts in the upper left hand panel
by dividing (0, 1) into 16 subintervals, and ends in the lower right with
1,024 subintervals. In other words, we are approximating the continuous
Brownian motion with a sequence of discrete random walks.

Because we are plotting a single sample path, the value of Wt must be
the same in each panel for any point in time, such as 1

16 . For example, in
the upper right panel, the interval (0, 1) is divided into 64 subintervals. The
values of the Brownian motion at times 1

16 , 1
8 , . . . , 15

16 , 1 must be the same as
in the upper left panel. But we can’t just generate the 64-step version and
connect every fourth value with a straight line to get the 16-step version.
This would violate the requirement that the random walk move up or down
at each time step.

Rather, we generate the 16-step version, and interpolate a 4-step discrete
Brownian bridge between neighboring points. A Brownian bridge is just a
Brownian motion that is constrained to end at a certain point at a certain
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F IGURE 2.4 Convergence of a Random Walk to a Brownian Motion
Random walks with 16, 64, 256, and 1,024 steps, but the same random seed. The graphs are constructed by filling in the
intermediate steps with discrete Brownian bridges.69
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time. In simulation, one uses a Brownian bridge to “thicken up” Brownian
motion sample points in a way that is true to the Brownian motion’s tendency
to wander, while still getting it to the next, already-known, sample point.
Let’s take a closer look at the construction of a Brownian bridge in order to
better understand the variation properties of Brownian motion.

Denote up-moves in the random walk representations by a 1 and down-
moves by a 0. The 16-step random walk can then be represented as a random
sequence of 0s and 1s. In our example, we are increasing the fineness of the
random walk by subdividing each time interval into four equal subintervals
in each step of the convergence to a Brownian motion. Since each time step is
divided into four, and 2 = √

4, the magnitude of the up- and down-moves is
divided by two. If the next step in the coarser random walk is a down-move,
there are then four different ways the finer random walk could get there
in four steps, with each increment just half the size of the coarser random
walk’s increments. They can be represented by the 4-dimensional identity
matrix

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

The four possible bridging paths if there is an up-move are

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

Note that the required bridge does not depend on the last step or on
the position, but only on the next step. This is an expression of the mar-
tingale property, or “memorylessness,” of Brownian motion. To generate
the finer random walk, at each step of the coarser random walk, depending
on whether it is an up or down move, we randomly pick one of the four
rows of the appropriate one of these matrices to generate the intermediate
four steps.

We can now see how increasing the fineness of the random walk in-
creases the total distance traveled. Each time we refine the random walk by
dividing the time steps by a factor of four, multiplying the number of time
steps by four, and connecting the steps with a Brownian bridge, we double
the distance traveled compared to one step of the coarser random walk.
As the random walk becomes finer and finer, and converges to a Brownian



P1: a/b P2: c/d QC: e/f T1: g

JWBT440-c02 JWBT440-Malz August 17, 2011 16:38 Printer: To Come

Market Risk Basics 71

motion, the distance traveled—the total variation—approaches infinity. But
the quadratic variation has remained at unity.

2.3.2 Geometric Brownian Mot ion

The Wiener process Wt, with a few changes, provides our model of logarith-
mic returns on the asset:

� We add a drift μ, expressed as a decimal per time period t. We can do
this by adding a constant μ�t to each step of the random walk as it
converges to Wt.

� We scale the random walk by a volatility term σ by multiplying each time
step of the original random walk by σ . The volatility will be assumed
for now to be a constant parameter, not dependent on the current level
of the asset price and not dependent on time.

The convergence results of the last subsection remain the same, but the value
of the Brownian motion is now a normally distributed random variable with
mean μt and variance σ 2t:

Wt ∼ N(μt, σ
√

t)

This completes the model of increments to the logarithm of the asset
price or risk factor. A standard way to write this is as a stochastic differential
equation (SDE):

d log(St) = μdt + σdWt

The random value of an increment to the log of the asset price over
some time interval (t, t + τ ) can be expressed as

log(St+τ ) = log(St) + μτ + σ (Wt+τ − Wt)

So we now have a model of log returns:

rt,τ = μτ + σ (Wt+τ − Wt)

Logarithmic returns are therefore normally distributed:

rt,τ ∼ N(μτ, σ
√

τ )
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Based on this model, we build a model of the increments to the level of
the asset price. We can’t simply take exponents to characterize the level of the
asset price itself. Rather, we must apply Itô’s Lemma, using the relationship
St = elog(St ). We get the SDE

dSt =
(

μ + 1
2

σ 2
)

Stdt + σ StdWt (2.1)

Intuitively, this makes perfect sense. If the logarithm of the asset price
moves randomly up or down in proportion to a volatility factor σ , the ran-
dom increases will accelerate the exponential growth more than the equally
probable random decreases will decelerate them. The reason is that the pos-
itive returns increase the asset price level, the base for the next vibration,
while the negative returns decrease the base. So the exponent of the process,
the asset price level, will grow on average just a bit faster than μ, quite apart
from its random fluctuations. Itô’s Lemma tells us exactly how much: 1

2σ 2

per time unit.
Another way to see this is to go back to the discrete-time model for

a moment and imagine an asset price moving up or down each period by
the same proportional amount σ . The asset price starts at some arbitrary
positive level S0, and

St =
{

St−1(1 + σ ) for t − 1 odd
St−1(1 − σ ) for t − 1 even

The volatility of logarithmic changes in the asset is approximately σ if σ is
low. For any σ > 0, St will eventually go to zero; how quickly depends on
how large is σ . If, however, we adjust the process to

St =
⎧⎨
⎩

St−1

(
1 + σ + σ 2

2

)
for t − 1 odd

St−1

(
1 − σ + σ 2

2

)
for t − 1 even

it will stay very close to S0 almost indefinitely.
The solution to the SDE, Equation (2.1), for the asset price level is

St = S0eμdt+σdWt (2.2)

Figure 2.5 illustrates the behavior of an asset price following geometric
Brownian motion, and Figure 2.6 illustrates the behavior of log returns. The
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F IGURE 2.5 Geometric Brownian Motion: Asset Price Level
Upper panel (zero drift) Fifteen simulations of the price level over time of an asset
following a geometric Brownian motion process with μ = 0 and σ = 0.25 at an
annual rate. The initial price of the asset is S0 = 100. The hyperbola plots the 95
percent confidence interval over time: at any point in time, 95 percent of the
simulated path should be within it.
Lower panel (positive drift) This panel is identical to the one above but with
μ = 0.20 at an annual rate.
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F IGURE 2.6 Geometric Brownian Motion: Daily Returns
Simulation of 1,000 sequential steps of a geometric Brownian motion process with
μ = 0 and σ = 0.25 at an annual rate. The horizontal grid lines mark the 99 percent
confidence interval. There should be about five occurrences of returns above and
below the grid lines. In most samples of 1,000, however, this will not be exactly the
case. This becomes important when we try to assess the quality of model-based risk
measures.

asset price has these properties if it follows a geometric Brownian motion
process:

� The asset price is equally likely to move up or down.
� The further into the future we look, the likelier it is that the asset price

will be far from its current level.
� The higher the volatility, the likelier it is that the asset price will be far

from its current level within a short time.
� The time series of daily logarithmic asset returns are independent draws

from a normal distribution.

Example 2.9 (Distribution of Asset Price Under Standard Model) Using the
stochastic process illustrated in Figure 2.5, with S0 = 100, μ = 0, and σ =
0.125, the expected value of the asset price after 128 business days (t = 0.5)
is 100, and the 95 percent confidence interval for S0.5 is (83.7659, 118.451).

2.3.3 Asset Return Volat i l i ty

As we have seen, in the standard model, logarithmic returns on an asset
that follows a geometric Brownian motion with a drift μ and volatility σ
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are normally distributed as N(μτ, σ
√

τ ). Expected return and variance are
proportional to the time interval over which the returns are measured:

E[rt,τ ] = μτ

Var(rt,τ ) = E[(rt,τ − E[rt,τ ])2]) = σ 2τ

The return volatility or standard deviation is proportional to the square root
of the interval:

√
Var(rt,τ ) = σ

√
τ

This is called the square-root-of-time rule. It is commonly used to convert
volatilities and covariances from one interval, such as daily, to another, such
as annual, and vice versa. In computing volatility for shorter periods than
one year, we usually take only trading days rather than calendar days into
account. Once holidays and weekends are accounted for, a typical year in
the United States and Europe has a bit more than 250 trading days (52 five-
day weeks, less 8 to 10 holidays). A convenient rule of thumb is to assume
256 trading days. Converting from annual to daily volatility is then a simple
division by

√
256 = 16.

Our notation for return doesn’t indicate the period over which returns
are measured. In the standard model, this doesn’t matter, because the square-
root-of-time tells us how to move back and forth between measurement in-
tervals. In a different model, the measurement period can be very important.
For example, in a mean-reverting volatility model, measuring return volatil-
ity over a short period such as one day might lead to a wild overestimate of
volatility over a longer period such as one year.

2.4 PORTFOLIO RISK IN THE STANDARD MODEL

The standard model, as we’ve presented it so far, is a world with just one
risk factor: The only source of uncertainty is the randomness of the future
endowment. But the world may have more than one “ultimate” source of
risk, and portfolios typically contain exposures to many securities. So we
need to think about how the risks of the individual securities or risk factors
relate to one another. First, of course, we introduce even more notation. We
have a portfolio with xn units, priced at Sn, of each of the N assets in the
portfolio, n = 1, . . . , N. The units might be the number of shares of stock
or the bond par value or the number of currency units.

We need a model of the joint or multivariate probability distribution of
the N returns. The natural extension of the standard model we just outlined is



P1: a/b P2: c/d QC: e/f T1: g

JWBT440-c02 JWBT440-Malz August 17, 2011 16:38 Printer: To Come

76 FINANCIAL RISK MANAGEMENT

to stipulate that risk factors follow a multidimensional geometric Brownian
motion process. The portfolio’s logarithmic returns are then jointly normally
distributed. In the joint normal model, each of the N assets has a log return
distribution

rt,τ,n ∼ N(μnτ, σn
√

τ ) n = 1, . . . , N

In a normal model, we can discuss “risk” and “volatility” nearly inter-
changeably. We therefore have to repeat our warning that returns are not,
in fact, joint normal, so that the theories and tools laid out here should be
thought of as expository devices or approximations.

2.4.1 Beta and Market Risk

Suppose we want to know how one asset’s return varies with that of another
asset or portfolio. The return covariance measures the variance of one asset’s
return that is associated with another asset’s return variance. It is expressed
in squared return units:

σmn = E [(rm − E [rm])(rn − E [rn])] m, n = 1, . . .

where rm and rn now represent returns on two different assets as random
variables rather than at a point in time.

The return correlation also measures the extent to which the asset re-
turns move together. While the covariance will be affected by typical size
of the returns of the two assets, and is hard to compare across asset pairs
with different volatilities, correlation is always on (−1, 1) and therefore
easy to compare and interpret. The correlation ρmn is related to volatility

σn =
√

E
[
(rn − μn)2

]
and covariance by

ρmn = σmn

σmσn
m, n = 1, . . .

We previously introduced beta as a measure of the comovement of
a security’s returns with aggregate economic risk. Beta is also used as a
statistical measure of the comovement of the returns of two different assets.
The beta of asset m to asset n is defined as the ratio of the covariance of asset
m’s and asset n’s excess returns to the variance of asset n’s excess return:

βmn = σmn

σ 2
n

The beta is often interpreted as the variation in asset m return that can
be “explained by” or “predicted from” asset n’s variation. Typically, asset
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n is a portfolio representing a major asset class such as stocks or bonds, or
a major subclass, such as a national or industry index. Beta is then used as
a relative risk measure; it can be viewed as telling you what the risk is of,
say, a single stock relative to the stock market as a whole.

The standard way to estimate beta is to run a regression between the
two assets’ excess returns. The regression equation is:

rmt − r f = α + βmn(rnt − r f ) + ut

In the joint normal model, the error terms ut in this equation are also
normally distributed. The direction of the regression matters: in general
βmn �= βnm.

When we look at the beta of one asset’s returns to another’s or to
an index, we are interested not only in “how much beta” there is—is the
beta near unity, or negative, well above unity, or near zero?—but also the
extent to which variation in the asset’s return is attributable to variation in
the index return. To measure this, we can look at the R-squared or R2 of
the regression, which is equal to the square of the correlation between the
dependent and independent variables. Let ρ̂x,y denote the sample correlation
coefficient between x and y:

R2 ≡ ρ̂2
x,y

We have 0 ≤ R2 ≤ 1. An R2 close to 1 indicates that the index returns do
much to explain movements in the asset. The R2 of the regression is often
interpreted as a measure of the explanatory power of beta.

The beta coefficient is related to the correlation by

ρmn = βmn
σn

σm
⇔ βmn = ρmn

σm

σn

So the beta is close to the correlation if the two variables are about the same
in variability. If the dependent variable, say an individual stock, has a low
volatility compared to the independent variable, say, a stock index, then
even if the correlation is close to unity, the beta will be low.

Example 2.10 (Descriptive Statistics for EUR-USD and USD-JPY) For
EUR-USD and JPY-USD price returns, November 1, 2005, to October 31,
2006, we have the following descriptive statistics. An estimate of their joint
return distribution, under the assumption the pair of currency returns is a
bivariate normal, is illustrated in Figure 2.7. A scatter plot of the returns
and the estimated regression line of USD-JPY on EUR-USD are displayed
in Figure 2.8. The ellipse plotted in Figure 2.8 contains 95 percent of the
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F IGURE 2.7 Joint Distribution of EUR and JPY Returns
Estimated joint normal density of logarithmic daily EUR-USD and JPY-USD price
returns, January 2, 1996, to October 6, 2006. Prices are expressed as the dollar
price of the non-USD currency. A slice parallel to x, y-plane corresponds to
confidence region for the two returns.
Source: Bloomberg Financial L.P.

observed returns. The volatilities are, using
√

252 = 15.8745 as the square-
root-of-time factor:

EUR-USD JPY-USD

Daily return volatility 0.61 0.68
Annual return volatility 9.69 10.79

The statistics relating the two currencies to one another are

Covariance of daily returns 14.80 × 10−5

Correlation of daily returns 0.357
Beta of EUR-USD to JPY-USD 0.320
Beta of JPY-USD to EUR-USD 0.398
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regression line
R2 0.417

ellipsoid containing 95% of observations
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F IGURE 2.8 Correlation and Beta
Scatter plot of logarithmic daily EUR-USD and JPY-USD price returns, Nov. 1,
2005, to Oct. 31, 2006, and regression of USD-JPY on EUR-USD. Exchange rates
are expressed as the dollar price of the non-USD currency.
Source: Bloomberg Financial L.P.

Conversely, one can easily have a high beta, but a low correlation and
thus a low R2, if the dependent variable has a very high volatility compared
to the index. This will happen if an individual stock’s return has only a loose
association with the market’s return, but, when the individual stock price
moves, it moves a lot.

Figure 2.9 illustrates this possibility. In constructing the graph, we model
the dependent and independent variables—the asset and index returns—as
jointly normally distributed variates with zero mean. Once we have a model,
we can state the population α, β, and R2. The population α is zero, while
the population β is given by the covariance matrix—that is, the volatilities
and correlation—of the asset returns.

Suppose we fix the index return volatility at 15 percent. There are many
ways to get, say, β = 1. If we set σy = 2σx, then we must have ρx,y = 0.5
and R2 = (0.5)2 = 0.25:

1 = 2σx

σx
0.5

Similarly, if σy = 4σx, that is, the dependent variable is highly volatile,
the correlation must be only ρx,y = 0.25 and R2 = (0.25)2 = 0.0625. The
slope of the line doesn’t change, but the goodness-of-fit is much lower.
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F IGURE 2.9 Volatility and Beta
Scatter plot of daily returns of joint realizations of a low-volatility and high
volatility dependent and independent variates, and the common population
regression line. The dependent variable volatility is set at σx = 0.15 per annum. The
high-volatility dependent variable has σx = 0.60 and ρx,y = 0.25, and is represented
by points. The low-volatility dependent variable has σx = 0.30 and ρx,y = 0.50, and
is represented by +’s.
The population regression line has a slope β = 1 and intercept α = 0 in both cases.
If we did enough simulations, the sample regression lines would very likely coincide
almost exactly with the population regression line. However, the high-volatility
observations are vertically strewn very widely around the regression line compared
to the low-volatility simulations.

Beta is often used in the context of the capital asset pricing model
(CAPM), an equilibrium model framed in terms of security returns rather
than consumption and endowments. The CAPM makes a strong assumption,
mean-variance optimization, about investor preferences. In this model, a
household’s utility is a function of portfolio return and volatility rather
than of consumption, and it seeks to maximize return for a given level of
volatility. Like the consumption-based model developed above, the CAPM’s
major results can be expressed in terms of beta. The equilibrium return rn

of any security n can be expressed as

E
[
rn − r f

] = βnE
[
rmkt − r f

]
n = 1, 2, . . .

where rmkt represents the market portfolio. The market portfolio can be
interpreted as an aggregate measure of risk, or as an aggregate of all the
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risky securities outstanding. In practical applications, it is represented by a
broad market index such as the S&P 500 stock market index or a global
stock market index such as the MSCI.

The beta relationship states that the expected excess return on any asset
is proportional to the excess return of the market portfolio. The ratio of
single-asset to market excess returns depends on security n’s beta. This rela-
tionship is similar to that derived above in the standard asset pricing model.
In both models, the risk premium of any individual security is a function
of two components: a beta, which depends on the risk characteristics of the
security itself, and a second component, the risk premium of the market
portfolio, which is the same for all securities. In both models, there is sin-
gle risk factor, whether the price of risk derived from the SDF, or the risk
premium of the market portfolio, that embodies equilibrium prices, given
preferences and fundamentals.

There are, however, important differences between βn and Cov(rn,κ)
Var(κ) . The

CAPM beta is positive for securities that pay off in prosperous times, when
the market portfolio is high, while Cov(rn,κ)

Var(κ) is positive for securities that pay
off in lean times when consumption is low. That is why the CAPM beta
relationship omits the minus sign.

A further major result of the CAPM is that, in equilibrium, asset prices
must have adjusted so that the market portfolio is the optimal mix of risky
assets for everyone. Portfolio choice is not about choosing securities, since
prices will adjust in equilibrium so that households are content to own the
mix of securities outstanding in the market. Rather, it is about choosing
the mix of the risky market portfolio and a riskless asset. The latter choice
depends on preferences and may differ across households with different
utility functions.

The CAPM is not completely satisfying, because it relies on the very spe-
cific mean-variance optimization assumption about preferences, and because
the concept of a market portfolio is both nebulous and unobservable. The
arbitrage pricing theory (APT) is one response. Rather than making strong
assumptions about preferences, it assumes that returns are linearly related
to a set of (possibly unobservable) factors, and that arbitrage opportunities
are competed away, at least for the most part.

The APT starts with a linear factor model of security n’s returns:

rn = E [rn] + βn1 f1 + βn2 f2 + · · · + βnK fK + εn n = 1, 2, . . .

The factors f1, . . . , fK are random variables, representing surprises or
“news” such as a higher-than-expected inflation rate, or lower-than-
expected profits in a particular industry. The βnk are betas or sensitivities to
the factors fk. The model imposes these restrictions:
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E[ fk] = 0 ∀n = 1, . . . , K
E[ f j fk] = 0 ∀ j, k = 1, . . . , K

E[εn] = 0 ∀n = 1, 2, . . .

E[εmεn] = 0 ∀m, n = 1, 2, . . .

The first two restrictions state that, on average, there are no surprises
in the factors and that the factors are independent of one another. The last
two restrictions state that security prices adjust, up to a random error, so
that expected excess returns are just what the factor model says they should
be.

This model of expected returns is similar to, but more plausible than, the
CAPM’s single ultimate source of risk, embodying all the fundamental risks
in the economy. The assumption of no or limited arbitrage possibilities is
more attractive than a specific hypothesis on preferences. Using the factor-
based return model, together with the no-arbitrage assumption, the APT
arrives at this representation of equilibrium returns:

E
[
rn − r f

] ≈ βn1λ1 + βn2λ2 + · · · + βnKλK n = 1, 2, . . .

where the βnk are the same factor sensitivities as in the return model, and
the λk are the expected excess returns or risk premiums on each of the K
factors. The intuition behind the arbitrage pricing model is that asset and
portfolio returns line up “more or less” with the returns on the factors that
govern them, apart perhaps from random noise. We use a model like this to
generate credit risk in Chapters 6 and 8

From a risk measurement standpoint, one limitation of the CAPM and
arbitrage pricing models is that they explain return in terms of a “snapshot”
of factors, while in practice returns may be generated by varying a portfolio
over time. Gamma trading, which we discuss in Chapters 5 and 13, is the
classic example of such a dynamic strategy. It is also very hard in practice
to distinguish genuine alpha from harvesting of risk premiums.

2.4.2 Diversi f icat ion

Diversification is reduction in risk from owning several different assets. We
will explore diversification further in Chapter 13, when we discuss portfolio
market and credit risk. For now, let’s get a sense of the interaction between
risk, volatility, and correlation in the simple model in which returns are
jointly normally distributed.

It’s easier at this point to work with the weights rather than the
number of units of the assets. The market value of each position
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is xnSn. Each asset has a portfolio weight, related to the market values
by

ωn = xnSn∑N
n=1 xnSn

n = 1, . . . , N

The volatility of a portfolio depends on the volatilities of the components
and their correlations among one another. If a portfolio contains N assets,
its volatility is

σp =
N∑

n=1

ω2
nσ

2
n +

N∑
n=1

N∑
m=1

ωnωmσnσmρnm

Suppose we have a portfolio consisting of long positions in two assets.
The assets themselves can also be portfolios in their own right, as long as
we have good estimates—or at least estimates for which we are prepared to
suspend disbelief—of their expected return, volatilities, and correlation. For
concreteness, let’s imagine the two assets are well-diversified portfolios of
equities (asset 1) and bonds (asset 2).

Assume there is a fixed dollar amount that can be invested in the two
assets, and that we can only take long positions in the portfolios, so it is
unambiguous to speak of portfolio weights based on market values. Denote
the expected returns by μn, the return volatilities by σn, n = 1, 2, the asset 1
weight by ω, and the returns correlation between the two assets by ρ. The
portfolio return is

μp = ωμ1 + (1 − ω)μ2

and the portfolio volatility is

σp =
√

ω2σ 2
1 + (1 − w)2σ 2

2 + 2ω(1 − ω)σ1σ2ρ

In this simple setup with long positions only, there is (almost) always a
diversification effect which reduces risk. Figure 2.10 illustrates the impact
of the asset return volatilities and correlation and the allocation among the
two assets on the diversification benefit:

� If correlation is +1 (perfect correlation), any portfolio that is long one
or both assets has same risk. The diversification effect is zero, but you
also don’t add risk as the weight changes.
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F IGURE 2.10 Diversification, Volatility, and Correlation
Upper panel: Volatility of a portfolio consisting of long positions in two assets
with identical volatilities. Perfect correlation: any long-long portfolio has same
risk. Zero correlation: one asset might have large loss while other does not.
Diversification benefit in terms of vol. Greatest diversification benefit from negative
(positive) correlation.
Lower panel: Volatility of a portfolio consisting of long positions in two assets
with different volatilities and zero correlation. If the two volatilities are very
different, the opportunity to diversify is more limited.
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� If correlation is 0, one asset might have a loss while other does not.
There is some diversification effect, unless one of the allocations and/or
one of the volatilities is very large compared to the other.

� If correlation is –1 and the weights are the same (ω = 0.5), the positions
are a perfect offset, and portfolio risk is zero.

� If correlation is somewhere in between, there is a diversification ben-
efit, but it may be small. If correlation is near zero then the diversi-
fication benefit will be small if the volatilities are very close to one
another.

2.4.3 Ef f ic iency

Not every diversified portfolio is efficient. An efficient portfolio is one
in which the investments are combined in the right amounts, so that
you cannot get extra return from a different combination without also
getting some extra volatility. We distinguish between efficient portfolios
and minimum-variance portfolios, which are portfolios with the lowest
possible volatility for a given portfolio return. There generally are sev-
eral minimum-variance portfolios with the same volatility, one of which
has a higher portfolio return than the others. Only the latter is efficient.
Figure 2.11 plots minimum-variance and efficient portfolios constructed
from stocks and bonds for varying correlations between the two asset
classes.

It is easy to plot these curves for just two assets; every combination of
the two has minimum variance. If there is a third asset, things are more
complicated. Substituting a high-volatility asset with a low or negative cor-
relation to the other two, for a lower-volatility asset with a high correlation
to the third asset, might reduce the portfolio volatility. So for more than
two assets, mathematical programming techniques are required to plot the
minimum-variance curve.

But once we identify any two minimum-variance portfolios, we “revert”
to the two-asset case: We can plot the entire minimum-variance locus from
just these two. So long as the stock and bond portfolios in our example are
themselves minimum-variance portfolios, that is, well-diversified portfolios
that can’t be reshuffled to provide a higher return without also increasing
volatility, the example is a good representation of the minimum-variance
locus for the entire universe of stocks and bonds.

The efficient portfolios are the ones to the north and right of the global
minimum-variance portfolio, the one combination of the assets that has
the lowest volatility of all. Figure 2.10 displays an example of the efficient
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F IGURE 2.11 Minimum-Variance and Efficient Portfolios
Efficient frontier for portfolios that can be created from long positions in two
assets, for different correlations between the two assets.
Upper panel: Each curve shows the entire locus of minimum-variance portfolios.
The global minimum-variance portfolios are marked by black dots. The thick part
of each curve shows the efficient minimum-variance portfolios.
Lower panel: Efficient frontier with a risk-free rate of 0.04 and correlation −0.35.
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frontier for portfolios that can be created from long positions in two assets
(or portfolios) with expected returns and volatilities given by

Return Volatility

Stock portfolio 0.10 0.10
Bond portfolio 0.05 0.20

and correlations as noted in the graphs. The global minimum-variance port-
folios correspond to the minima of the plots in the upper panel of Figure 2.10
and are marked with large dots in the upper panel of Figure 2.11. For a given
covariance matrix of returns, the asset weights at this unique point don’t
depend on expected returns, though the resulting expected return does.

How can a portfolio be minimum-variance but inefficient? The dot
marked “a” identifies one. It contains more bonds and less stocks than its
efficient twin directly north of it on the same minimum-variance locus. Since
bonds have a lower expected return, the portfolio has sacrificed return for
no reward in lower volatility.

The upper panel of Figure 2.11 shows only the return-volatility combi-
nations available by mixing long positions in stocks and bonds. If we are
allowed to go short bonds, that is, borrow bonds, sell what we borrow,
and use the proceeds to buy more stocks, we can get higher returns and
higher volatility. The locus of available combinations with shorting would
be the continuation of the hyperbola plots in the upper panel of Figure 2.10,
northeast of the point at which the allocation to stocks is 100 percent. With
shorting permitted, extremely high expected returns can be obtained, albeit
with extremely high volatility. In addition, the ratio of return to volatility
deteriorates at higher returns.

The availability of a risk-free rate changes the problem of finding effi-
cient portfolios. The new efficient frontier is now no longer the upper arm
of the hyperbola, but rather the straight line through the point r f on the
y-axis that is tangent to the locus of efficient portfolios without a risk-free
rate. As in the case in which there is no borrowing at the risk-free rate, every
efficient portfolio is a combination of two other “portfolios,” the risk-free
investment and the combination of stocks and bonds defined by the tangency
point.

The efficient frontier with a risk-free investment, for a stock-bond return
correlation of –0.35, is displayed as a thin solid line in the upper panel
of Figure 2.11. The lower panel of Figure 2.11 focuses on the case of a
stock-bond return correlation of –0.35. Again, the locus of the efficient
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frontier depends on whether it is possible to short. If shorting is excluded,
the efficient frontier is the straight line segment connecting the point (0, r f )
to the tangency point and the segment of the upper arm of the hyperbola
between the tangency point and the point at which the entire allocation is
to stocks. If shorting is possible, the efficient frontier is the ray from (0, r f )
through the tangency portfolio.

Expected returns on individual assets in an efficient portfolio have this
relationship to one another:

μn − r f

σnp
= μp − r f

σ 2
p

n = 1, . . . , N

It states that the ratio of expected excess return of each asset to its return
covariance with the portfolio is equal to the portfolio’s excess return ratio
to its variance. The right-hand side expression is the Sharpe ratio μp−r f

σp
of

the portfolio. The tangency portfolio is the unique portfolio for which the
Sharpe ratio is maximized.

This relationship can also be defined in terms of beta:

μn − r f = σnp

σ 2
p

(μp − r f ) = βnp(μp − r f ) n = 1, . . . , N (2.3)

If the portfolio is a broad index, representing the “market,” the CAPM tells
us it is not only minimum-variance but efficient (ignoring the Roll critique).

2.5 BENCHMARK INTEREST RATES

The term risk-free rate is something of a misnomer: there are no truly riskless
returns in the real-world economy. The term is usually used to mean “free
of default risk.” There are two types of interest rates that are conventionally
taken as proxies for a riskless return. Which of these types of risk-free rate
is used depends on the context. In any case, we should be aware that these
are conventions or benchmarks, used for pricing and analytics, but not to
be taken literally as riskless returns.

Government Bond Interest Rates Government bonds are often consid-
ered riskless assets. The reason is that the issuer of the bonds, the central
government, is also the issuer of the currency of denomination of the bonds,
which is also generally the only legal tender.
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This analysis, however, leaves out several risks:

� Longer-term government bills and bonds have price risk arising from
fluctuations in interest rates, even if there is no credit risk. For example,
the owner of a three month U.S. T-bill will suffer a capital loss if the
three month rate rises. This risk is small for very short-term bills, but
most government debt issues, including those of the United States, have
initial maturities of at least a month. We discuss market risk due to
interest rate volatility in Chapter 4.

� At the point of default, a government may have the alternative of issuing
sufficient currency to meet its debt obligations. Government bonds are
denominated in nominal currency units, that is, they are not routinely
indexed for inflation. Investors therefore face inflation risk, the risk that
the inflation rate in the currency of issue over the life of the bond will
exceed the market expectation that was incorporated in the price of the
bond at the time the investment is made.

Many industrialized countries issue inflation-protected bonds, with
coupons and principal payments that are indexed to inflation. These are
generally longer-term issues, though, and have considerable interest-rate
market risk.

� Foreign investors may face exchange-rate risk. The government can
guarantee repayment in its own currency units, but cannot eliminate
exchange-rate risk or guarantee the value of the bonds in terms of other
currencies.

� Government issues may in fact have non-trivial credit risk. Bonds issued
by most countries have higher yields than similar bonds issued by highly
industrialized countries, such as the United States, the United Kingdom,
and Germany. And even the latter countries’ credit risk carries a positive
price, as seen in prices of sovereign CDS. Government bonds are also
subject to credit migration risk (see Chapter 6), the risk of an adverse
change in credit rating, for example the August 5, 2011 downgrade by
Standard and Poors of the U.S. long-term rating.

Central government debt is more prone to default if it is denom-
inated in foreign currency. If the sovereign entity is also the issuer of
the currency in which the bond is denominated, it has the ability to re-
deem the bonds in freshly issued local currency, expanding the domestic
money supply, no matter how large the debt. Whether it chooses to do
so depends on the degree of central bank independence and its monetary
policy choices.2 A government might not, however, choose this course of

2The U.S. Treasury has issued few foreign currency–denominated liabilities. Almost
all of these exceptions related to exchange rate policy and were obligations to other
developed-country central banks.
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action if redemption at par would entail an extreme inflation outcome.
In contrast, U.S. dollar-denominated debt issued by other countries, or
U.S. municipal bonds, cannot avoid default by issuing dollars.

There are, however, examples of countries defaulting on domestic
currency–denominated obligations. For example, on August 17, 1998,
Russia restructured its short-term ruble-denominated bonds in an at-
tempt to avoid a massive expansion of its monetary supply and a deval-
uation of the ruble. Russia was forced nonetheless on September 2 to
devalue.

Money Market Rates Short-term interest rates, those on obligations with
a year or less to maturity, are called money market rates. Some money
market rates serve as benchmarks for risk-free rates. The Libor, or London
Interbank Offered Rate, curve are the rates paid for borrowing among the
most creditworthy banks. There is a distinct Libor curve for each of ten
major currencies. Libor rates are proxies for risk-free rates because of the
central role the banking system plays. Many investors can obtain financing
for their own trading activities at interest rates close to the Libor curve. We
study the financing of investment positions in the contemporary financial
system in Chapter 12. The British Bankers’ Association (BBA) compiles and
posts an estimate of the prevailing Libor rates for each currency at 11:00
every morning in London, based on a poll of major banks, making Libor a
convenient reference point.

However, Libor rates incorporate a significant degree of credit risk. For
major currencies, there is always a substantial spread between these rates
and those on government bonds of that currency’s issuing authority. For
example, the spread between 10-year U.S. dollar swap par rates and the yield
on the 10-year U.S. Treasury note is generally on the order of 50 bps and
can occasionally be much higher (see Figure 14.15 and the accompanying
discussion in Chapter 14).

Another type of money market rate that is also often used as an indicator
of the general level of short-term rates is the repo rate, or rates payable on
repurchase agreements, introduced in the previous chapter. We discuss repo
in more detail in Chapter 12, but for now we can describe it as a short-term
rate that is relatively free of credit risk. It, too, is often used as a proxy for
risk-free rates.

The spread between Libor and other money market rates that serve
as proxies fluctuates, and at times it is extremely unstable, as we see in
Chapter 14. This has, for example, been the case during the subprime crisis.
Even more than government bond yields, then, the Libor curve is not a
risk-free rate, but rather a benchmark for interest rates.
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FURTHER READING

Danthine and Donaldson (2005) is a textbook introduction to modern fi-
nance theory. Campbell (2000) is a review of the state of play and open
questions in asset pricing and return behavior. Cochrane (2005), Dybvig
and Ross (2003), and Ross (2005) are clear introductions to the state-price
density approach to asset pricing. Drèze (1970) is an early paper identifying
the risk-neutral probabilities embedded in equilibrium asset prices.

The first few chapters of Baxter and Rennie (1996) and Chapter 3 of
Dixit and Pindyck (1994) are clear and accessible introductions to stochastic
processes. Duffie (1996) is more advanced, but covers both the asset pricing
and the return behavior material in this chapter, and is worth struggling
with. Černý (2004) combines explication of models of return behavior and
asset pricing with programming examples.

Elton and Gruber (2003) is a textbook covering the portfolio allocation
material presented in this chapter. Huberman and Wang (2008) is an intro-
duction to arbitrage pricing theory. The original presentation of the theory
is Ross (1976).

Lo (1999) discusses risk management in the context of decision the-
ory and behavioral economics. Barberis and Thaler (2003) is a survey of
behavioral finance.

See Houweling and Vorst (2005) on the Libor curve as a risk-free bench-
mark.
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